Konferenzprogramm

Die im Konferenzprogramm des GTD 2024 angegebenen Uhrzeiten entsprechen der Central European Time (CET).

Ihr benötigt mehr Übersicht vor Ort?
» Zur Programmübersicht als PDF (Mittwoch)
» Zum Raum- und Expoplan

Konferenzprogramm 2024

Thema: AI

Nach Tracks filtern
Nach Themen filtern
Alle ausklappen
  • Mittwoch
    08.05.
, (Mittwoch, 08.Mai 2024)
10:35 - 11:10
Mi2.1
Unit Tests on Steroids: Leveraging Fuzz Testing and Generative AI for a Scalable Testing Strategy
Unit Tests on Steroids: Leveraging Fuzz Testing and Generative AI for a Scalable Testing Strategy

Building secure and reliable software is an essential and challenging endeavor that requires extensive testing. Due to development teams' time and resource constraints, testing falls short, and necessary tests are even skipped altogether. Feedback-based fuzzing is the most practical dynamic testing method to find bugs and security vulnerabilities in software. In this talk, I'll provide an overview of fuzzing and show how we can leverage large language models to generate the test harnesses needed for fuzzing automatically. This enables an automated and scalable testing strategy for modern software.

Target Audience: Developers, testers, engineering managers, CTOs
Prerequisites: Basic knowledge of Java
Level: Basic

Extended Abstract:
Dynamic testing methods, including feedback-based fuzzing, are the most effective approach for finding software bugs and security vulnerabilities. Fuzzing has uncovered thousands of bugs and vulnerabilities in both open-source and enterprise software. The self-learning aspect of feedback-based fuzzing makes it suitable to integrate into the development process to provide quick feedback to developers, thus enabling them to fix them quickly. Despite this incredible track record, one barrier has been left hindering the broad adoption of dynamic white-box testing: The manual engineering effort required to identify relevant interfaces and develop the corresponding test harnesses. In this talk, I'll provide an overview of feedback-based fuzzing and show how it can automatically uncover functional and security issues. I will also discuss the self-learning aspect of automatically generating test cases that explore the program and maximize code coverage. Next, I'll address the overhead of writing test harnesses for fuzzing and show how we can leverage the code generation capabilities of large language models to automate this step. This opens the door to building an automated and scalable testing strategy for our software. I'll demonstrate the discussed approach in a live demo.

Khaled Yakdan is the Chief Scientist and Co-Founder at Code Intelligence. Holding a Ph.D. in Computer Science and having spent over nine years in academia, Khaled now oversees the implementation of research outcomes in AI, usable security, and vulnerability detection into Code Intelligence’s products. He worked and contributed to research in reverse engineering, vulnerability finding, and concolic executions. His papers are published at top-tier international security conferences.

Khaled Yakdan
Satellit
Khaled Yakdan
Satellit

Vortrag Teilen

11:20 - 11:55
Mi2.2
Endlich mal Intelligenz in der Qualitätssicherung!
Endlich mal Intelligenz in der Qualitätssicherung!

Was wäre, wenn wir heute schon menschliche Intelligenz in der Qualitätssicherung und im Testdesign nutzen würden? Oft zeigt sich, dass noch viel zu viel aus dem Bauch und ad hoc durchgeführt wird. Da hilft es dann auch nichts, diese Ergebnisse aus dem Testdesign zu automatisieren. Können uns Sprachmodelle wie ChatCPT helfen. Wie? Auf was müssen wir achten? All diese Punkte werde ich in meinem Vortag beleuchten und mit Live-Beispielen untermalen. Der Vortrag wird durch ein Miro-Projekt unterstützt, sodass die Teilnehmer auch schon während des Vortrags dort aktiv sein können und natürlich auch noch lange danach.

Zielpublikum: Tester:innen, Testmanger:innen, Requirements Engineers
Voraussetzungen: Keine speziellen, Spaß an Neuem, Interesse an Qualitätssicherung
Schwierigkeitsgrad: Basic

Michael Fischlein arbeitet seit mehr als 20 Jahren im Bereich Softwarequalitätssicherung, Requirements Engineering und Agile Coaching. Gerade das Thema Testen in agilen Arbeitswelten ist ein Hauptthema. In den letzten knapp 10 Jahren steht die Ausbildung der Mitarbeiter von Sogeti und deren Kunden im Zentrum seiner Arbeit. In den letzten Monaten kommt verstärkt die Nutzung von Sprachmodellen wie ChatCPT hinzu um zu evaluieren wie diese Werkzeuge den Testprozess unterstützen können.

Michael Fischlein
Plateau
Michael Fischlein
Plateau

Vortrag Teilen

12:05 - 12:40
Mi2.3
Team AI vs. Team Human
Team AI vs. Team Human

When we explain our neurodivergent brains and how they work to colleagues and friends, we often get compared with Artificial Intelligence - no joke! But one of us is barely using AI tools and one of us loves them! We will play a game with the audience to finally know if you are Team Human or Team AI. In addition, we will share with you our assessment approach to help you determine if you have any weaknesses that ChatGPT can help you with. You will know if you are the type to use the tool and what to consider to use it effectively.

Target Audience: Everyone
Prerequisites: None
Level: Basic

Extended Abstract:
Using ChatGPT in different ways is not the only way we are diverse. However, we both found our way into the testing community. Tugba has a lot of technical expertise and feels the best in a SDET role whereas Viviane prefers roles with communication and processes such as quality architect or quality coach. To prepare our speech we are going to give us each several tasks from our daily doing. Tugba will solve them using "her buddy" ChatGPT and Viviane will face them without it. We will show you how we each came to our solution and present to you our results. And then we need you to judge! After each presented task we will ask for your preference. And we will clarify the ultimate question: Are you team AI or team human? As an additional benefit we will give some insights how to effectively use ChatGPT in your daily doing and where it might be better to use the intelligence without the artificial aspect.

Tugba has a technical background focused on test automation and SDET. She embarked on her journey with Accenture in 2018. She has taken on various roles as agile tester, test automation engineer and architect.

Vivianes Leidenschaft liegt auf der Verbesserung von Qualitätsprozessen. Hierfür kombiniert sie seit 2018 bei Accenture Testing-, Coaching- & Trainererfahrung mit ihrem Hintergrund in Kommunikationsmanagement.

Mehr Inhalte dieses Speakers? Schaut doch mal bei sigs.de vorbei: https://www.sigs.de/experten/viviane-hennecke/

Tugba Karakaya, Viviane Hennecke
Plateau
Tugba Karakaya, Viviane Hennecke
Plateau
Vortrag: Mi2.3
Themen: AI

Vortrag Teilen

Zurück